Boundary value problems for the one-dimensional Willmore equation – Almost explicit solutions
نویسندگان
چکیده
We give closed expressions for classical symmetric solutions of boundary value problems for the one-dimensional Willmore equation. Navier as well as Dirichlet boundary conditions are considered. In the first case, one has existence of precisely two solutions for boundary data below a suitable threshold, precisely one solution on the threshold and no solution beyond the threshold. This effect reflects that we have a bending point in the corresponding bifurcation diagram and is not due to that we restrict ourselves to graphs. Under Dirichlet boundary conditions we always have existence of precisely one symmetric solution. Parts of the material can already be found in Euler’s work. It’s the goal of the present report to make Euler’s observations more accessible and to develop them under the point of view of boundary value problems.
منابع مشابه
Boundary value problems for the one-dimensional Willmore equation
The one-dimensional Willmore equation is studied under Navier as well as under Dirichlet boundary conditions. We are interested in smooth graph solutions, since for suitable boundary data, we expect the stable solutions to be among these. In the first part, classical symmetric solutions for symmetric boundary data are studied and closed expressions are deduced. In the Navier case, one has exist...
متن کاملStability and Symmetry in the Navier Problem for the One-Dimensional Willmore Equation
We consider the one-dimensional Willmore equation subject to Navier boundary conditions, i.e. the position and the curvature are prescribed on the boundary. In a previous work, explicit symmetric solutions to symmetric data have been constructed. Within a certain range of boundary curvatures one has precisely two symmetric solutions while for boundary curvatures outside the closure of this rang...
متن کاملGENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005